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ABSTRACT 
 

The big evolution in software field lead to increase the need for existence of high quality quantitative measurements 

for both syntactic and semantic features. Considering software products in particular, we found that the most 

existing tools measure syntactical features only – syntactic metrics- that reflect how programs represented in source 

code, but not what functions that programs define. In this paper, we discuss semantic metrics, which characterize the 

sets and functions that the programs define; now it would be a useful complement to the vast body of software 

metrics in use. The results of this study show how semantic metrics can be used as indicator to some factors that 

affect software reliability. 
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I. INTRODUCTION 

 

Software engineering like all engineering disciplines 

relies on product and process metrics to quantify quality 

attributes of software artifacts, to support quantitative 

decision-making [1]. Software metrics aim is to 

establish the relationships between numbers collected 

from software artifacts and quality attributes of software 

[2].  

 

Focusing on product metrics in particular, we found that 

most metrics are based on a syntactic analysis of the 

source code, rather than the analysis of its semantic 

properties. In addition, we found that the use of these 

metrics is centered on their role in helping software 

engineers predict fault proneness of software artifacts. 

 

We submit the following premises to challenge this state 

of affairs: 

 

 While the representation of a program may give us 

some information about how difficult the design 

was, and how prone it was to has faults, it tells us 

relatively little about whether the design of the 

program is redundant, whether the program is fault 

tolerant, or whether it is likely to behave correctly. 

 Focusing on faults, the practice of software metrics 

may be missing an important aspect of software 

quality. It is widely documented that a program may 

be either reliable while having many faults, or 

unreliable while having fewer faults. From the 

standpoint of a user, failure frequency is more 

important than fault density, and metrics should 

reflect this focus. 

 

Traditional software metrics attempt to estimate or 

quantify the quality attributes of a software product in 

terms of whether it is correct with respect to its 

specification; yet, they try to do so without 

consideration of the specification in question. We discus 

that any attempt to quantify the likelihood of being 

correct with respect to a specification ought to involve 

the specification in question, in addition to the program. 

[1] 

 

In the light of these observations, a number of semantic 

software metrics were introduced in [1].This study is an 

attempt to explore how these metrics can be used 

analytically to predict software reliability. 

 

The paper is organized as follows: section I presents a 

brief introduction, Section II presents a survey of 

existing software metrics, syntactic metrics and 

semantic metrics. Section III introduces the concept of 

entropy in information theory and its uses. Section IV 

summarized the proposed set of semantic metrics which 
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presented in [1] and their capabilities. In sections V and 

VI the empirical validation process and results are 

discussed. Finally, analytical model were presented and 

results were shown. 

 

II. METHODS AND MATERIAL 

 
A. Software Metrics 

 

According to the study, cited in [3] software metrics are 

defined as type of measurement that uses numerical 

ratings to quantify software attributes. Typical 

measurements include the quality of the source codes, 

the development process and the accomplished 

applications[4]. 

 

The terms metric and measure have some overlap. 

Measure is used for more concrete or objective 

attributes but metric are used for more abstract, higher-

level, or somewhat subjective attributes. For instance, 

line of code (LOC) is a measure: it is both objective and 

concrete. [4]. Four syntactical measurement classes are 

investigated in [5]as follows: 

 

A) Length measurements  

 

Metrics that use this kind of measure focus only on code 

length without considering software complexity. Such 

as: 

 

1) Line of code (LOC): 

 

It is a traditional way of measuring program size by 

counting its number of lines. All lines are counted 

except that contains comments and empty lines [3]. 

Although, this is the easiest way to measure program 

length, it does not give an accurate measure of actual 

program length in terms of time and effort. 

 

2) Number of signs:  

 

LOC does not take into account any factors other than 

total number of lines. Number of lines does not 

represent an accurate measure for program length. To 

overcome this limitation the metric focus on code 

content rather than total number of lines. It counts 

number of operands and operators as follow: n1 is the 

number of operations, N1 total operation frequency, n2 

is the number of operands and N2 is the total operands 

frequency [5]. All these parameters used in program 

length calculation. 

 

B) Depth measurements  

 

This measurement considers the code complexity 

regardless of its length. It depends on the concept of 

having two programs with same length and different 

complexity [5]. Such as: 

 

1) McCabe: Cyclomatic complexity was developed by 

Thomas J. McCabe, Sr. in 1976 and is used to indicate 

the complexity of a program [3]. This metric is 

amongst the most popular methods to measure 

implementation complexity [2]. It represents the 

program in a control flow graph. The nodes of the 

graph correspond to indivisible groups of program 

commands, and a directed edge connects two nodes if 

the second command might be executed immediately 

after the first command [6]. Number of edges and 

nodes used to calculate the following equation: 

 

   (1) 

Where e is the number of edges and n is the number of 

nodes. Researches confirmed that McCabe metric could 

be used to give a glance of faults density. [5] 

 

C) Size Measurements 

 

These metrics focused on both program length and 

depth to measure complexity. One of the famous 

metrics that used this method is halstead metric [4]. 

Halstead suggests a measure to program length as 

appears in (2): 

 

  (2) 

 

Where n1 is the number of operators and n2 is the 

number of operands in the code. In addition to that to 

calculate the program size halstead metric represents the 

program as a message written by a programmer. 

According to that if we need to calculate the actual 

value for this message we must calculate H (n). 

 

Where n is the number of symbols and H is the massage 

name. The complete equation is [5] 

 

   (3) 

http://en.wikipedia.org/w/index.php?title=Thomas_J._McCabe,_Sr.&action=edit&redlink=1
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Directed_graph
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Based on that we can conclude to the result that number 

of symbols = n1 + n2. 

 

 

D)  Data Measurements 

 

Data measurement aims to measure the size and 

complexity of the program structure. It should be noted 

that the size of the program might differ according to 

the type of programming language. [5] 

 

Size = minimum size / actual size   (4) 

 

By another way, we can calculate the density of the 

program data by calculating the number of known 

variables within the program [5]. These may contribute 

to estimate the effort that made by the software 

programmer. 

 

 

E) Design Measurement 

 

There are two main concepts introduced here; Cohesion 

and coupling. 

Cohesion reflects the extent to which internal elements 

of the system related to each other. Where, coupling 

cares about the relation between different partial 

components. 

 

Design quality = high cohesion + low coupling (5) 

 

All the previous measurements belong to Syntactic 

metrics field. That reflect attributes of the source code 

text; not its execution attributes.  

 

A significant drawback of the current used methods is 

that different structural aspects of code result in 

different metrics value, even if code is performing the 

same task. Syntactic metrics are not always accurate 

descriptors of quality. On another hand, Desirable 

quality attributes like reliability and maintainability 

cannot be measured until some operational version of 

the code is available [6]. Yet we wish to be able to 

predict which part of the software is less reliable, more 

difficult to test, or require more maintenance than others, 

even before system is completed. 

 

Nowadays, there is a great movement towards the 

semantic metrics that reflect the meaning of software 

within the problem domain. Researchers use semantic 

metrics to provide insight into software quality early in 

the design phase of software development [7]. Others 

extend semantic metrics to analyze design specifications 

[8].Other researches move towards object oriented 

programming and empirically investigate a suit of 

design metrics to serve as predictors of fault-prone 

classes. More recently, in [9] cohesion and coupling of 

ontology based on semantic information are discussed. 

In spite of, the success of semantic metrics in software 

quality field, a little number of studies has been 

conducted on this issue. The field is still young and 

much research is still required. 

 

F) Information Theory / Entropy 

 

Entropy is closely related to the information theory; this 

section defines entropy in the context of source code 

analysis. 

 

In information theory, entropy is a measure of the 

uncertainty or information content of a random 

variable.[10] 

 

A random variable is a variable whose value is 

subjected to variations due to chance. Random variables 

can be classified as either discrete or continuous [10]. 

 

In this context, the term entropy is usually refers to the 

Shannon entropy, which quantifies the expected value 

of the information contained in a message. Entropy is 

typically measured in bits, nats, or bans.[11]Shannon 

entropy is the average unpredictability in a random 

variable, which is equivalent to its information content. 

The concept was introduced by Claude E. Shannon at 

1948 in [12]. 

 

Shannon entropy provides an absolute limit on the best 

possible lossless encoding or compression of any 

communication, assuming that the communication may 

be represented as a sequence of independent and 

identically distributed random variables [10]. Shannon 

denoted the entropy H of a discrete random variable X 

with possible values {x1, ...,xn} and probability mass 

function P(X) as, 

 

   (6) 

 

Where E is the expected value operator, and I is the 

information content of X. [14] I(X) is a random variable. 

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-1#cite_note-1
http://en.wikipedia.org/wiki/Variable_(mathematics)
http://en.wikipedia.org/wiki/Discrete_random_variable
http://en.wikipedia.org/wiki/Continuous_random_variable
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Self-information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Nat_(information)
http://en.wikipedia.org/wiki/Ban_(information)
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-3#cite_note-3
http://en.wikipedia.org/wiki/Information_content
http://en.wikipedia.org/wiki/Claude_E._Shannon
http://en.wikipedia.org/wiki/Lossless
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-8
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-8
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When taken from a finite sample, the entropy can 

explicitly be written as: 

 

  (7) 

 

Where, b is the base of the logarithm that used. Another 

type of entropy is Joint entropy, which defined as a 

measure of the uncertainty associated with a set of 

variables. The joint entropy of two variables and  

defined as: 

 

    (8) 

 

Where and are particular values of and , 

respectively, P(X,Y) is the probability of these values 

occurring together. 

 

Joint entropy is used to define the conditional entropy. 

In information theory, the conditional entropy quantifies 

the amount of information needed to describe the 

outcome of a random variable given that the value of 

another random variable  is known. So entropy can be 

calculated by: 

 

)(),()|( YHXYHYXH     (9) 

 

Interested reader can refer to [11] for more detail. Some 

possible interpretations of entropy in software are listed 

below: 

 

- Entropy of a probability distribution is the expected 

value of the information of the distribution. 

- Entropy is related to how difficult it is to guess the 

value of a random variable X [13]. 

- Entropy indicates the best possible compression for 

the distribution, i.e. the average number of bits 

needed to store the value of the random variable 

X.[13] 

 

Entropy is used in various areas; in software 

engineering field. It is applied to measure the cohesion 

and coupling of a modular system, design a 

mathematical model for evaluating software quality and 

define complexity measures, etc. [14,15,16].Although 

the use of entropy for measuring software artifacts is not 

new [13, 16, 17], its use in measuring quality attributes 

is still limited. This paper presents a new use of entropy 

metric for measuring software probability of failure as 

indicator of an important feature, reliability. 

 

B. The Semantic Metrics 

 

By contrast, with syntactic metrics discussed above, the 

semantic metrics we discuss in this section reflect the 

functions the software product defined, rather than how 

these functions are represented. In particular, we 

consider the following metrics [1], which are defined 

using information theory functions. 

 

 State redundancy: This metric reflects the extent to 

which a state is redundant in program, i.e. includes 

relationships between its various variables; 

programs that carry much state redundancy are 

more likely to be able to detect erroneous states, 

when they arise. It can be measured by simple 

entropy equation.  

 

)()()(  HsHp      (10)  

H(s) is the entropy of input variables (initial state) and 

H(σ) is the entropy of output variables(final state). 

 

The state redundancy of the initial state reflects the gap 

between the minimal size required to store the program 

state and the size actually reserved [1]. The 

programmer could reduce this gap by using few 

variables as possible. The state redundancy of the final 

state reflects the maximum bandwidth hold between 

program variables as a result of the execution of the 

program.[1] 

 

 Functional redundancy. This metric reflects the 

extent to which the function of the program is 

redundant, i.e. its result is represented in variables 

that have many relationships between them; 

programs whose functions are redundant are more 

likely to be able to detect errors in the results of 

their function execution, when they arise. The 

following is the equation. 

 

)(/))()(()( YHYHSHg  .  (11) 

 

Where H(s) is the entropy of input variables and 

H(Y) is the entropy of output variables. 

 

 Error Masking. This metric reflects the extent to 

which the function of a program maps different 

http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Conditional_entropy
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Random_variable


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  416 

inputs into common outputs; programs that have 

high error masking ability are more likely to map 

erroneous states into correct final states, thereby 

avoiding failure and making error recovery 

unnecessary. It simply represented by conditional 

entropy as follows: 

 

).|()( YXHg     (12) 

 

Where X represents set of input variable values and 

Y is the correct output value. Entropy function used 

to map both of them. 

 Non determinacy. Whereas the previous metrics 

dealt with the program (more specifically its 

semantics), this metric deals with the specification 

of the program, and represents the property that the 

same input may be mapped to a wide range of 

possible correct output; specifications that are 

nondeterministic are more likely to tolerate 

programs that produce erroneous final states [1]. 

The following entropy equation can be used to 

estimate that. 

)|()( XYHRx     (13)  

 

Where X is input variable value, Y is the possible 

correct output. 

 

Together, these four metrics reflect the ability of a 

program to be reliable with respect to its specification; 

unlike syntactic software metrics, they depend on what 

functions the program computes and what specification 

the program is intended to satisfy, rather than what form 

the program takes. Our research plan calls for 

developing methods that allow us to compute these 

metrics on arbitrary programs and (formal) 

specifications, and to analyze the correlation of these 

metrics with a program’s ability to tolerate faults and 

avoid failure in practice, at run-time. The following 

section investigates validation process. 

 

C. Validation  

 

Empirical validation is used to explore correlations 

between some functional quality attributes such as 

reliability and fault tolerance. During experiments, the 

most famous standard programs such as Siemens and 

Space [18] are selected to test the proposed metrics. The 

four semantic metrics are applied on 10 programs 

including: tacs, schedule, schedule2, replace, totinfo, 

printtokens, printtokens2, Gzip, Sorting and Space, then 

the results are recorded for validation purpose. Table I 

bellow shows brief description about used programs 

[18]. 

 

Table I.  Description about Used Programs 

 

 Program Name Description 

1 Tcas Aircraft collision avoidance system.  

2 Schedule2 
Are priority schedulers 

3 Schedule 

4 Replace Performs pattern recognition. 

5 Space interpreter for an array definition 

language (ADL) 

6 Sorting 

program 

Algorithm receive unordered array then 

sort it. 

7 Printtokins 
lexical analysers 

8 Printtokins2 

9 Totinfo Information gain measure 

10 Gzip Unix utility 

 

III. RESULTS AND DISCUSSION 

 

A. Validation Results 

  

Empirical validation 

 

In this step 8 metrics - 4 syntactic and 4 semantic - are 

applied on selected programs. Metrics are: McCabe, 

Halstead, Number of fault, Fault Density in addition to 

the four semantic metrics. Table II& III shows the 

results of application of the 8metrics on the selected 

programs. Both correlation and regression analysis 

methods are used to explore the relations between 

syntactic and semantic metrics.  Regression is used to 

identify the much closest relation between applied 

metrics. It implements a linear regression model. Which 

means the dependent variable(s) can be written in terms 

of a linear combination of the independent variable(s) 

[19]. The following section shows the results for 

empirical validation step. 

 

Table ‘II’.  Semantic Metrics Applied on 10 Selected 

Programs. 
 

P. name Fun. 

Red. 

State Red. Non- 

injectivity 

Non de- 

terminacy 

Tcas 8.26 660.1 bits 34 bit 32 

Schedule2 11.5 765.4 bits 64 bits 0 

Schedule 13.3 121.36 bits 96 bits 0 

Replace 8.6 134.2 bits 32 bit 32 
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Space 8.9 65335.6 bit 19200 bits 32 

Sorting 14.6 3115 bit 564 bits 564 

Totinfo 7.6 254.7 bit 224 bit 32 

Printtokins 0.05 364 bits 3180 bits 32 

Printtokins2 24.6 660.1 bits 200 bits 32 

gzip 0.07 765.4 bits 3000 bit 32 

 
 

Table ‘III’. Results of Applying Syntactic Metrics on 

Selected Programs 

 

P. name V(G) V 
Number 

of faults 

Fault 

density 

Tcas 26 3800 41 0.01 

Schedule2 49 7715 10 0.001 

Schedule 37 7785 9 0.001 

Replace 92 17293 32 0.001 

Space 748 33015 35 0.02 

Sorting 6 646 0 0.02 

Totinfo 45 9311 23 0.01 

Printtokins 72 12922 10 0.01 

Printtokins

2 
79 9973 

7 
0.01 

Gzip 1260 24149 40 0.0 

 

B. Correlation Analysis 

 

Our goal here is to verify that there is a statistically 

significant association between attributes estimated by 

semantic and syntactic metrics. Spearman rank 

correlation is a common used robust correlation 

technique [20] because it can be applied even if the 

association between elements is non-linear. Table IV. 

Shows that there exists a statistically significant positive 

relationship between the following:  

 

- Functional redundancy and State redundancy 

- Non Infectivity and fault density, complexity. 

- Complexity and volume, number of faults.  

- Volume and Number of faults and fault density 

 

Table IV. Corelation Results  

 
  

FR NJ V(G) V SR 

NFault

s 

FDensit

y 

FR CC 1.00

0 
.147 .087 .026 .578* -.127- -.258- 

Sig . .600 .757 .928 .024 .653 .353 

NJ CC 
.147 1.000 

.649*

* 
.496 

.054

- 
.033 -.630* 

Sig. .600 . .009 .060 .849 .906 .012 

V(G) CC 
.087 

.649*

* 
1.000 

.928*

* 
.016 .549* -.680** 

Sig.  .757 .009 . .000 .955 .034 .005 

V CC 
.026 .496 

.928*

* 
1.000 -.023- .657** -.572* 

Sig.  .928 .060 .000 . .934 .008 .026 

SR CC .578

* 
.054- .016 .023- 1.000 -.007- -.214- 

Sig.  .024 .849 .955 .934 . .980 .445 

NFaults CC 
.127- .033 .549* 

.657*

* 
-.007- 1.000 -.100- 

Sig.  .653 .906 .034 .008 .980 . .723 

 

Where: 

FR: Functional redundancy, NJ: Non injectivity, V(G): 

MaCcabe, V: Volume, SR: State redundancy , Nfaults: 

Number of faults, Fdesnity, Fault Density, CC: 

correlation Coefficient.  

C. Regression Results 

 

We now compare software metrics built based on 

syntactic features against those built using semantics. 

Table V shows the summary of regression results.R2 is 

a measure of variance in the dependent variable that 

estimated by the model built using certain predictors 

[20]. 

Table V. Summary of Regression Results 

 
 Semantic Metric Syntactic and semantic 

metrics 

R2 

1 State redundancy Fault Density 0.859 

2 Functional 

redundancy 

MaCcabe 0.501 

3 Non_injectivity Fault Density 0.432 

4 Functional 

redundancy 
Number OfFaults 

0.259 

5 Non_injectivity State redundancy 0.205 

6 Non_injectivity MaCcabe 0.213 

7 Functional 

redundancy 

Voulume 0.110 

8 Functional 

Redundancy Number Of Faults 0.029 

9 Non_injectivity 

10 State redundancy MaCcabe 0.010 

11 State redundancy Functional redundancy 0.006 

12 Non_injectivity Functional redundancy 0.002 

 

D. Analytical Model 

 

The main goal of this section is to figure out how 

semantic metrics can contribute to the prediction of  

software reliability. Measuring such property should 
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consider the fault lifecycle and find a way to measure 

the probability of failure according to that. The main 

factors considered are: 

1. Existence of a fault 

2. Fault sensitization 

3. Fault propagation 

4. Specification violation 

The semantic metrics discussed above considered  for 

measuring these factors as indicator of failure 

probability. 

 

Assuming a fault exists, the probability of a faulty code 

to be executed is p1. If a faulty code is executed, the 

probability of error generation is p2. If errors are 

generated, the probability of these errors resulting into 

failure is p3. Another factor should be considered to 

reflect whether the resulting failure is violating the 

specification or not this is p4. Thus, the probability of a 

software fault resulting into a failure is product of P1, 

P2, p3 and P4. The following section describes how to 

measure these factors: 

 

1. Probability of executing faulty statements: 

If we assume fault exists as mentioned so, the 

probability to execute the part of code contains fault 

depends on faults density in contrast to program length 

in Line of code (LOC). So, the proposed measure 

considers both fault density and program length. 

 

P1 = 1(1-fault density)^N. 

 

Where N represents software size measured in Lines of 

code 

 

2. Probability of sensitization:  

If we assume faulty code was executed, then, there are 

two cases. Either the executed fault causes an error or 

not causes an error. Error here means state that is 

different from the expected state.  The proposed 

measure considers two semantic measures, non- 

injectivity and state redundancy metrics.  Non-

injectivity used to figure out the probability of error 

masking if fault cause an error and initial state 

redundancy estimate whether the software willing to 

find faults. 

 

P2 = 1-2( Nj –initial state redundancy ) 

= 1-2 ( Nj- K(Ϭ ) ) 

3. Probability of error propagation 

Error propagation means that the executed faulty code 

cause an error and the error cause the program final 

state to be erroneous, so, to measure such case both non-

injectivity and H(Ϭ) represents the entropy of outputs. 

 

= (1-2)NJ–H(Ϭ)) 

 

4. Probability of specification violation: 

A program may fail to compute its intended function 

and yet still behave according to the specification it is 

intended to satisfy [1].  It is important to measure 

probability of specification violation to estimate to what 

extend software still valid if the final state deviate from 

the correctness . Non-determinacy and entropy of output 

integrated here. The proposed measure is: 

 

Probability of specification violation (intolerance) = 

(1- 2) ND– H( Ϭ f ) 

Where H(Ϭ f) represents the entropy of final state. 

 

E. Analytical Model Results 

 

To predict failure probability as discussed the product of 

the above factors are measured. Table VI shows failure 

probability for the sample programs. It is important to 

note that the value of probability of failure will be 

between 0 and 1. So, according to that if failure 

probability equals to or nearly equal to 1 so reliability 

will be low and vies versa. 

 

The probability of failure =P1 x P2 xP3 x P4. 

 

Table VI. Measurement of Failure Probability  

 
P. name P1 P2 P3 P4 P(Failure

) 

Tcas 0.8243 1 1 0.9 0.7416 

Schedule2 0.312 1 1 0.9 0.2808 

Schedule 0.663 1 0.9 0.99 0.59073 

Replace 0.432 1 1 0.9 0.3888 

Space 1 1 1 1 1 

Sorting 0.635 1 1 1 0.635 

Totinfo 0.9966 1 1 0.59 0.59198 

 

F. Discussion 

 

The results show that there is a relationship between 

software attributes measured by different metrics. This 

observation provides a data point in building up an 

empirical picture of both semantic and syntactic features 

of software. Another important observation that the 
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proposed semantic metrics contribute to the estimation 

of the three main factors of software fault tolerance 

which is: Error detection:, error masking and error 

recovery, that enable to provide good prediction of 

reliability in early stages. State and functional 

redundancy gives indicator to error detection, error 

masking could be measured by using non injectivity 

metric and recovery touched by non-determinacy metric, 

so, the combination of these metrics provide a good 

early estimation of reliability. 

 

IV. CONCLUSION AND FUTURE WORK 

 
The study touched an important attribute such as fault 

tolerance as an indicator of software reliability by using 

semantic metrics that inspect source code and (formal) 

specifications. Our semantic metrics derived in goal-

oriented manner, and then validated to insure their 

validity. The results insure program’s ability to tolerate 

faults and avoid failure in practice, at run-time can be 

estimated from its semantic.  Future work will concern 

with developing analytical/ statistical model for 

reliability prediction from other semantic attributes, and 

automation of semantic metrics tool to simplify 

measurement process based on concept of bandwidth of 

an assertion. 
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