
IJSRSET173117 | Received : 11 Feb -2017 | Accepted : 24 Feb-2017 | January-February-2017 [(3)1: 412-420]

© 2017 IJSRSET | Volume 3 | Issue 1 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

412

Analytical Model for Software Reliability Prediction
Rasha Gaffer M. Helali

Department of Computer Science, University of Bisha, Saudi Arabia

ABSTRACT

The big evolution in software field lead to increase the need for existence of high quality quantitative measurements

for both syntactic and semantic features. Considering software products in particular, we found that the most

existing tools measure syntactical features only – syntactic metrics- that reflect how programs represented in source

code, but not what functions that programs define. In this paper, we discuss semantic metrics, which characterize the

sets and functions that the programs define; now it would be a useful complement to the vast body of software

metrics in use. The results of this study show how semantic metrics can be used as indicator to some factors that

affect software reliability.

Keywords: Semantic Metrics, Software Metrics, Software Quality, Syntactic Metrics

I. INTRODUCTION

Software engineering like all engineering disciplines

relies on product and process metrics to quantify quality

attributes of software artifacts, to support quantitative

decision-making [1]. Software metrics aim is to

establish the relationships between numbers collected

from software artifacts and quality attributes of software

[2].

Focusing on product metrics in particular, we found that

most metrics are based on a syntactic analysis of the

source code, rather than the analysis of its semantic

properties. In addition, we found that the use of these

metrics is centered on their role in helping software

engineers predict fault proneness of software artifacts.

We submit the following premises to challenge this state

of affairs:

 While the representation of a program may give us

some information about how difficult the design

was, and how prone it was to has faults, it tells us

relatively little about whether the design of the

program is redundant, whether the program is fault

tolerant, or whether it is likely to behave correctly.

 Focusing on faults, the practice of software metrics

may be missing an important aspect of software

quality. It is widely documented that a program may

be either reliable while having many faults, or

unreliable while having fewer faults. From the

standpoint of a user, failure frequency is more

important than fault density, and metrics should

reflect this focus.

Traditional software metrics attempt to estimate or

quantify the quality attributes of a software product in

terms of whether it is correct with respect to its

specification; yet, they try to do so without

consideration of the specification in question. We discus

that any attempt to quantify the likelihood of being

correct with respect to a specification ought to involve

the specification in question, in addition to the program.

[1]

In the light of these observations, a number of semantic

software metrics were introduced in [1].This study is an

attempt to explore how these metrics can be used

analytically to predict software reliability.

The paper is organized as follows: section I presents a

brief introduction, Section II presents a survey of

existing software metrics, syntactic metrics and

semantic metrics. Section III introduces the concept of

entropy in information theory and its uses. Section IV

summarized the proposed set of semantic metrics which

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 413

presented in [1] and their capabilities. In sections V and

VI the empirical validation process and results are

discussed. Finally, analytical model were presented and

results were shown.

II. METHODS AND MATERIAL

A. Software Metrics

According to the study, cited in [3] software metrics are

defined as type of measurement that uses numerical

ratings to quantify software attributes. Typical

measurements include the quality of the source codes,

the development process and the accomplished

applications[4].

The terms metric and measure have some overlap.

Measure is used for more concrete or objective

attributes but metric are used for more abstract, higher-

level, or somewhat subjective attributes. For instance,

line of code (LOC) is a measure: it is both objective and

concrete. [4]. Four syntactical measurement classes are

investigated in [5]as follows:

A) Length measurements

Metrics that use this kind of measure focus only on code

length without considering software complexity. Such

as:

1) Line of code (LOC):

It is a traditional way of measuring program size by

counting its number of lines. All lines are counted

except that contains comments and empty lines [3].

Although, this is the easiest way to measure program

length, it does not give an accurate measure of actual

program length in terms of time and effort.

2) Number of signs:

LOC does not take into account any factors other than

total number of lines. Number of lines does not

represent an accurate measure for program length. To

overcome this limitation the metric focus on code

content rather than total number of lines. It counts

number of operands and operators as follow: n1 is the

number of operations, N1 total operation frequency, n2

is the number of operands and N2 is the total operands

frequency [5]. All these parameters used in program

length calculation.

B) Depth measurements

This measurement considers the code complexity

regardless of its length. It depends on the concept of

having two programs with same length and different

complexity [5]. Such as:

1) McCabe: Cyclomatic complexity was developed by

Thomas J. McCabe, Sr. in 1976 and is used to indicate

the complexity of a program [3]. This metric is

amongst the most popular methods to measure

implementation complexity [2]. It represents the

program in a control flow graph. The nodes of the

graph correspond to indivisible groups of program

commands, and a directed edge connects two nodes if

the second command might be executed immediately

after the first command [6]. Number of edges and

nodes used to calculate the following equation:

 (1)

Where e is the number of edges and n is the number of

nodes. Researches confirmed that McCabe metric could

be used to give a glance of faults density. [5]

C) Size Measurements

These metrics focused on both program length and

depth to measure complexity. One of the famous

metrics that used this method is halstead metric [4].

Halstead suggests a measure to program length as

appears in (2):

 (2)

Where n1 is the number of operators and n2 is the

number of operands in the code. In addition to that to

calculate the program size halstead metric represents the

program as a message written by a programmer.

According to that if we need to calculate the actual

value for this message we must calculate H (n).

Where n is the number of symbols and H is the massage

name. The complete equation is [5]

 (3)

http://en.wikipedia.org/w/index.php?title=Thomas_J._McCabe,_Sr.&action=edit&redlink=1
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Directed_graph

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 414

Based on that we can conclude to the result that number

of symbols = n1 + n2.

D) Data Measurements

Data measurement aims to measure the size and

complexity of the program structure. It should be noted

that the size of the program might differ according to

the type of programming language. [5]

Size = minimum size / actual size (4)

By another way, we can calculate the density of the

program data by calculating the number of known

variables within the program [5]. These may contribute

to estimate the effort that made by the software

programmer.

E) Design Measurement

There are two main concepts introduced here; Cohesion

and coupling.

Cohesion reflects the extent to which internal elements

of the system related to each other. Where, coupling

cares about the relation between different partial

components.

Design quality = high cohesion + low coupling (5)

All the previous measurements belong to Syntactic

metrics field. That reflect attributes of the source code

text; not its execution attributes.

A significant drawback of the current used methods is

that different structural aspects of code result in

different metrics value, even if code is performing the

same task. Syntactic metrics are not always accurate

descriptors of quality. On another hand, Desirable

quality attributes like reliability and maintainability

cannot be measured until some operational version of

the code is available [6]. Yet we wish to be able to

predict which part of the software is less reliable, more

difficult to test, or require more maintenance than others,

even before system is completed.

Nowadays, there is a great movement towards the

semantic metrics that reflect the meaning of software

within the problem domain. Researchers use semantic

metrics to provide insight into software quality early in

the design phase of software development [7]. Others

extend semantic metrics to analyze design specifications

[8].Other researches move towards object oriented

programming and empirically investigate a suit of

design metrics to serve as predictors of fault-prone

classes. More recently, in [9] cohesion and coupling of

ontology based on semantic information are discussed.

In spite of, the success of semantic metrics in software

quality field, a little number of studies has been

conducted on this issue. The field is still young and

much research is still required.

F) Information Theory / Entropy

Entropy is closely related to the information theory; this

section defines entropy in the context of source code

analysis.

In information theory, entropy is a measure of the

uncertainty or information content of a random

variable.[10]

A random variable is a variable whose value is

subjected to variations due to chance. Random variables

can be classified as either discrete or continuous [10].

In this context, the term entropy is usually refers to the

Shannon entropy, which quantifies the expected value

of the information contained in a message. Entropy is

typically measured in bits, nats, or bans.[11]Shannon

entropy is the average unpredictability in a random

variable, which is equivalent to its information content.

The concept was introduced by Claude E. Shannon at

1948 in [12].

Shannon entropy provides an absolute limit on the best

possible lossless encoding or compression of any

communication, assuming that the communication may

be represented as a sequence of independent and

identically distributed random variables [10]. Shannon

denoted the entropy H of a discrete random variable X

with possible values {x1, ...,xn} and probability mass

function P(X) as,

 (6)

Where E is the expected value operator, and I is the

information content of X. [14] I(X) is a random variable.

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-1#cite_note-1
http://en.wikipedia.org/wiki/Variable_(mathematics)
http://en.wikipedia.org/wiki/Discrete_random_variable
http://en.wikipedia.org/wiki/Continuous_random_variable
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Self-information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Nat_(information)
http://en.wikipedia.org/wiki/Ban_(information)
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-3#cite_note-3
http://en.wikipedia.org/wiki/Information_content
http://en.wikipedia.org/wiki/Claude_E._Shannon
http://en.wikipedia.org/wiki/Lossless
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-8
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-8

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 415

When taken from a finite sample, the entropy can

explicitly be written as:

 (7)

Where, b is the base of the logarithm that used. Another

type of entropy is Joint entropy, which defined as a

measure of the uncertainty associated with a set of

variables. The joint entropy of two variables and

defined as:

 (8)

Where and are particular values of and ,

respectively, P(X,Y) is the probability of these values

occurring together.

Joint entropy is used to define the conditional entropy.

In information theory, the conditional entropy quantifies

the amount of information needed to describe the

outcome of a random variable given that the value of

another random variable is known. So entropy can be

calculated by:

)(),()|(YHXYHYXH  (9)

Interested reader can refer to [11] for more detail. Some

possible interpretations of entropy in software are listed

below:

- Entropy of a probability distribution is the expected

value of the information of the distribution.

- Entropy is related to how difficult it is to guess the

value of a random variable X [13].

- Entropy indicates the best possible compression for

the distribution, i.e. the average number of bits

needed to store the value of the random variable

X.[13]

Entropy is used in various areas; in software

engineering field. It is applied to measure the cohesion

and coupling of a modular system, design a

mathematical model for evaluating software quality and

define complexity measures, etc. [14,15,16].Although

the use of entropy for measuring software artifacts is not

new [13, 16, 17], its use in measuring quality attributes

is still limited. This paper presents a new use of entropy

metric for measuring software probability of failure as

indicator of an important feature, reliability.

B. The Semantic Metrics

By contrast, with syntactic metrics discussed above, the

semantic metrics we discuss in this section reflect the

functions the software product defined, rather than how

these functions are represented. In particular, we

consider the following metrics [1], which are defined

using information theory functions.

 State redundancy: This metric reflects the extent to

which a state is redundant in program, i.e. includes

relationships between its various variables;

programs that carry much state redundancy are

more likely to be able to detect erroneous states,

when they arise. It can be measured by simple

entropy equation.

)()()( HsHp  (10)

H(s) is the entropy of input variables (initial state) and

H(σ) is the entropy of output variables(final state).

The state redundancy of the initial state reflects the gap

between the minimal size required to store the program

state and the size actually reserved [1]. The

programmer could reduce this gap by using few

variables as possible. The state redundancy of the final

state reflects the maximum bandwidth hold between

program variables as a result of the execution of the

program.[1]

 Functional redundancy. This metric reflects the

extent to which the function of the program is

redundant, i.e. its result is represented in variables

that have many relationships between them;

programs whose functions are redundant are more

likely to be able to detect errors in the results of

their function execution, when they arise. The

following is the equation.

)(/))()(()(YHYHSHg  . (11)

Where H(s) is the entropy of input variables and

H(Y) is the entropy of output variables.

 Error Masking. This metric reflects the extent to

which the function of a program maps different

http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Conditional_entropy
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Random_variable

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 416

inputs into common outputs; programs that have

high error masking ability are more likely to map

erroneous states into correct final states, thereby

avoiding failure and making error recovery

unnecessary. It simply represented by conditional

entropy as follows:

).|()(YXHg  (12)

Where X represents set of input variable values and

Y is the correct output value. Entropy function used

to map both of them.

 Non determinacy. Whereas the previous metrics

dealt with the program (more specifically its

semantics), this metric deals with the specification

of the program, and represents the property that the

same input may be mapped to a wide range of

possible correct output; specifications that are

nondeterministic are more likely to tolerate

programs that produce erroneous final states [1].

The following entropy equation can be used to

estimate that.

)|()(XYHRx  (13)

Where X is input variable value, Y is the possible

correct output.

Together, these four metrics reflect the ability of a

program to be reliable with respect to its specification;

unlike syntactic software metrics, they depend on what

functions the program computes and what specification

the program is intended to satisfy, rather than what form

the program takes. Our research plan calls for

developing methods that allow us to compute these

metrics on arbitrary programs and (formal)

specifications, and to analyze the correlation of these

metrics with a program’s ability to tolerate faults and

avoid failure in practice, at run-time. The following

section investigates validation process.

C. Validation

Empirical validation is used to explore correlations

between some functional quality attributes such as

reliability and fault tolerance. During experiments, the

most famous standard programs such as Siemens and

Space [18] are selected to test the proposed metrics. The

four semantic metrics are applied on 10 programs

including: tacs, schedule, schedule2, replace, totinfo,

printtokens, printtokens2, Gzip, Sorting and Space, then

the results are recorded for validation purpose. Table I

bellow shows brief description about used programs

[18].

Table I. Description about Used Programs

 Program Name Description

1 Tcas Aircraft collision avoidance system.

2 Schedule2
Are priority schedulers

3 Schedule

4 Replace Performs pattern recognition.

5 Space interpreter for an array definition

language (ADL)

6 Sorting

program

Algorithm receive unordered array then

sort it.

7 Printtokins
lexical analysers

8 Printtokins2

9 Totinfo Information gain measure

10 Gzip Unix utility

III. RESULTS AND DISCUSSION

A. Validation Results

Empirical validation

In this step 8 metrics - 4 syntactic and 4 semantic - are

applied on selected programs. Metrics are: McCabe,

Halstead, Number of fault, Fault Density in addition to

the four semantic metrics. Table II& III shows the

results of application of the 8metrics on the selected

programs. Both correlation and regression analysis

methods are used to explore the relations between

syntactic and semantic metrics. Regression is used to

identify the much closest relation between applied

metrics. It implements a linear regression model. Which

means the dependent variable(s) can be written in terms

of a linear combination of the independent variable(s)

[19]. The following section shows the results for

empirical validation step.

Table ‘II’. Semantic Metrics Applied on 10 Selected

Programs.

P. name Fun.

Red.

State Red. Non-

injectivity

Non de-

terminacy

Tcas 8.26 660.1 bits 34 bit 32

Schedule2 11.5 765.4 bits 64 bits 0

Schedule 13.3 121.36 bits 96 bits 0

Replace 8.6 134.2 bits 32 bit 32

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 417

Space 8.9 65335.6 bit 19200 bits 32

Sorting 14.6 3115 bit 564 bits 564

Totinfo 7.6 254.7 bit 224 bit 32

Printtokins 0.05 364 bits 3180 bits 32

Printtokins2 24.6 660.1 bits 200 bits 32

gzip 0.07 765.4 bits 3000 bit 32

Table ‘III’. Results of Applying Syntactic Metrics on

Selected Programs

P. name V(G) V
Number

of faults

Fault

density

Tcas 26 3800 41 0.01

Schedule2 49 7715 10 0.001

Schedule 37 7785 9 0.001

Replace 92 17293 32 0.001

Space 748 33015 35 0.02

Sorting 6 646 0 0.02

Totinfo 45 9311 23 0.01

Printtokins 72 12922 10 0.01

Printtokins

2
79 9973

7
0.01

Gzip 1260 24149 40 0.0

B. Correlation Analysis

Our goal here is to verify that there is a statistically

significant association between attributes estimated by

semantic and syntactic metrics. Spearman rank

correlation is a common used robust correlation

technique [20] because it can be applied even if the

association between elements is non-linear. Table IV.

Shows that there exists a statistically significant positive

relationship between the following:

- Functional redundancy and State redundancy

- Non Infectivity and fault density, complexity.

- Complexity and volume, number of faults.

- Volume and Number of faults and fault density

Table IV. Corelation Results

FR NJ V(G) V SR

NFault

s

FDensit

y

FR CC 1.00

0
.147 .087 .026 .578* -.127- -.258-

Sig . .600 .757 .928 .024 .653 .353

NJ CC
.147 1.000

.649*

*
.496

.054

-
.033 -.630*

Sig. .600 . .009 .060 .849 .906 .012

V(G) CC
.087

.649*

*
1.000

.928*

*
.016 .549* -.680**

Sig. .757 .009 . .000 .955 .034 .005

V CC
.026 .496

.928*

*
1.000 -.023- .657** -.572*

Sig. .928 .060 .000 . .934 .008 .026

SR CC .578

*
.054- .016 .023- 1.000 -.007- -.214-

Sig. .024 .849 .955 .934 . .980 .445

NFaults CC
.127- .033 .549*

.657*

*
-.007- 1.000 -.100-

Sig. .653 .906 .034 .008 .980 . .723

Where:

FR: Functional redundancy, NJ: Non injectivity, V(G):

MaCcabe, V: Volume, SR: State redundancy , Nfaults:

Number of faults, Fdesnity, Fault Density, CC:

correlation Coefficient.

C. Regression Results

We now compare software metrics built based on

syntactic features against those built using semantics.

Table V shows the summary of regression results.R2 is

a measure of variance in the dependent variable that

estimated by the model built using certain predictors

[20].

Table V. Summary of Regression Results

 Semantic Metric Syntactic and semantic

metrics

R2

1 State redundancy Fault Density 0.859

2 Functional

redundancy

MaCcabe 0.501

3 Non_injectivity Fault Density 0.432

4 Functional

redundancy
Number OfFaults

0.259

5 Non_injectivity State redundancy 0.205

6 Non_injectivity MaCcabe 0.213

7 Functional

redundancy

Voulume 0.110

8 Functional

Redundancy Number Of Faults 0.029

9 Non_injectivity

10 State redundancy MaCcabe 0.010

11 State redundancy Functional redundancy 0.006

12 Non_injectivity Functional redundancy 0.002

D. Analytical Model

The main goal of this section is to figure out how

semantic metrics can contribute to the prediction of

software reliability. Measuring such property should

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 418

consider the fault lifecycle and find a way to measure

the probability of failure according to that. The main

factors considered are:

1. Existence of a fault

2. Fault sensitization

3. Fault propagation

4. Specification violation

The semantic metrics discussed above considered for

measuring these factors as indicator of failure

probability.

Assuming a fault exists, the probability of a faulty code

to be executed is p1. If a faulty code is executed, the

probability of error generation is p2. If errors are

generated, the probability of these errors resulting into

failure is p3. Another factor should be considered to

reflect whether the resulting failure is violating the

specification or not this is p4. Thus, the probability of a

software fault resulting into a failure is product of P1,

P2, p3 and P4. The following section describes how to

measure these factors:

1. Probability of executing faulty statements:

If we assume fault exists as mentioned so, the

probability to execute the part of code contains fault

depends on faults density in contrast to program length

in Line of code (LOC). So, the proposed measure

considers both fault density and program length.

P1 = 1(1-fault density)^N.

Where N represents software size measured in Lines of

code

2. Probability of sensitization:

If we assume faulty code was executed, then, there are

two cases. Either the executed fault causes an error or

not causes an error. Error here means state that is

different from the expected state. The proposed

measure considers two semantic measures, non-

injectivity and state redundancy metrics. Non-

injectivity used to figure out the probability of error

masking if fault cause an error and initial state

redundancy estimate whether the software willing to

find faults.

P2 = 1-2(Nj –initial state redundancy)

= 1-2 (Nj- K(Ϭ))

3. Probability of error propagation

Error propagation means that the executed faulty code

cause an error and the error cause the program final

state to be erroneous, so, to measure such case both non-

injectivity and H(Ϭ) represents the entropy of outputs.

= (1-2)NJ–H(Ϭ))

4. Probability of specification violation:

A program may fail to compute its intended function

and yet still behave according to the specification it is

intended to satisfy [1]. It is important to measure

probability of specification violation to estimate to what

extend software still valid if the final state deviate from

the correctness . Non-determinacy and entropy of output

integrated here. The proposed measure is:

Probability of specification violation (intolerance) =

(1- 2) ND– H(Ϭ f)

Where H(Ϭ f) represents the entropy of final state.

E. Analytical Model Results

To predict failure probability as discussed the product of

the above factors are measured. Table VI shows failure

probability for the sample programs. It is important to

note that the value of probability of failure will be

between 0 and 1. So, according to that if failure

probability equals to or nearly equal to 1 so reliability

will be low and vies versa.

The probability of failure =P1 x P2 xP3 x P4.

Table VI. Measurement of Failure Probability

P. name P1 P2 P3 P4 P(Failure

)

Tcas 0.8243 1 1 0.9 0.7416

Schedule2 0.312 1 1 0.9 0.2808

Schedule 0.663 1 0.9 0.99 0.59073

Replace 0.432 1 1 0.9 0.3888

Space 1 1 1 1 1

Sorting 0.635 1 1 1 0.635

Totinfo 0.9966 1 1 0.59 0.59198

F. Discussion

The results show that there is a relationship between

software attributes measured by different metrics. This

observation provides a data point in building up an

empirical picture of both semantic and syntactic features

of software. Another important observation that the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 419

proposed semantic metrics contribute to the estimation

of the three main factors of software fault tolerance

which is: Error detection:, error masking and error

recovery, that enable to provide good prediction of

reliability in early stages. State and functional

redundancy gives indicator to error detection, error

masking could be measured by using non injectivity

metric and recovery touched by non-determinacy metric,

so, the combination of these metrics provide a good

early estimation of reliability.

IV. CONCLUSION AND FUTURE WORK

The study touched an important attribute such as fault

tolerance as an indicator of software reliability by using

semantic metrics that inspect source code and (formal)

specifications. Our semantic metrics derived in goal-

oriented manner, and then validated to insure their

validity. The results insure program’s ability to tolerate

faults and avoid failure in practice, at run-time can be

estimated from its semantic. Future work will concern

with developing analytical/ statistical model for

reliability prediction from other semantic attributes, and

automation of semantic metrics tool to simplify

measurement process based on concept of bandwidth of

an assertion.

V. ACKNOWLEDGMENT

I wish to thank Prof. Ali Mili for his valuable advices,

which contributed to the completion of this work.

VI. REFERENCES

[1]. A. Mili, A. Jaoua, M. Frias, Rasha Gaffer M.

Helali. Semantic Metrics for Software Products.

Innovations in Systems and Software

EngineeringA NASA Journal ISSN 1614-5046r,

April 2014.

[2]. W. Afzal, "Metrics in software test planning and

test design process,” Blekinge Institute of

Technology, 2007

[3]. A. Rau, Steinbeis Transferzentrum

Softwaretechnik,. A Whitepaper on Metrics.

1998, 1999, 2001. avilable online at:

http://www.it.fhtesslingen.de/~rau/forschung/metr

ics.htm.

[4]. Mills, E. verald E. Software Metrics, SEI

Curriculum Module SEI-CM-12-1.1, Carnegie

Mellon University, A good overview of product

and process metrics with an exhaustive

bibliography 1988.

[5]. Joe Schofield, The Statistically Unreliable Nature

of Lines of Code, CrossTalk, 18(4):29-33, April

2005. Available at

http://www.crosstalkonline.org/storage/issue-

archives/2005/200504/200504-Schofield.pdf

[6]. Norman E.Fenton, Shari Lawrence Pfleeger,

Softwai Metrics A Rigorous & Practical

Approach, SECOND EDITION, PWS

PUBLISHING COMPANY , 20 Park Plaza,

Boston, MA 021 16-4324.

[7]. Gall, C. S. Inf. Technol. & Syst. Center, Univ. of

Alabama in Huntsville, Huntsville, AL Lukins,

Stacy K.; Etzkorn, Letha H.; Gholston, Sampson;

Farrington, Phillip A.; Utley, Dawn R.; Fortune,

J.; Virani, Shamsnaz, Semantic software metrics

computed from natural language design

specification. Volume: 2 , Issue: 1 Page(s): 17 –

26.2008.

[8]. Etzkorn, Letha H. "Semantic metrics, conceptual

metrics, and ontology metrics: an analysis of

software quality using IR-based systems, potential

applications and collaborations." Proc. Int. Conf.

Software Maintenance. 2006.

[9]. Bo Hu, Yannis Kalfoglou, Harith Alani, David

Dupplaw, Paul Lewis, Nigel Shadbolt Semantic

metrics, Managing Knowledge in a World of

NetworksLecture Notes in Computer

ScienceVolume 4248, 2006, pp 166-181.

[10]. Fazlollah M. Reza (1961, 1994). An Introduction

to Information Theory. Dover Publications, Inc.,

New York. ISBN 0-486-68210-2.

[11]. I Csiszar and J Koerner. Information Theory:

Coding Theorems for Discrete Memoryless

Systems. CambridgeUniversity Press, 2011.

[12]. Shannon, C.E. (1948), "A Mathematical Theory

of Communication", Bell System Technical

Journal, 27, pp. 379–423 & 623–656, July &

October, 1948

[13]. Panchenko, Oleksandr, Stephan H. Mueller, and

Alexander Zeier. "Measuring the quality of

interfaces using source code entropy." Industrial

Engineering and Engineering Management, 2009.

IE&EM'09. 16th International Conference on.

IEEE, 2009.

[14]. E. B. Allen, "Measuring graph abstractions of

software: An information-theory approach,”in

Proceedings of IEEE Symposium on Software

Metrics, 2002, pp. 182- 193.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 420

[15]. Yi T. and Wu F., Empirical Analysis of Entropy

Distance Metric for UML ClassDiagrams, ACM

SIGSOFT Software Engineering Notes, 2004.

[16]. Goise, Francois & Olla, Stefano (2008). Entropy

methods for the Boltzmann equation: lectures

from a special semester at the Centre Émile Borel,

Institut H. Poincaré, Paris, 2001. Springer. p. 14.

ISBN 978-3-540-73704-9

[17]. Amrit Dhillon, Amrinder Singh, Analysis of

Software Metrics for Bubble Sort and Selection

Sort. International Journal of Computer

Applications & Information Technology Vol. 1,

No.1, July 2012.

[18]. Subject Infrastructure Repository, online at:

http://sir.unl.edu/portal/index.php.

[19]. Regresstion analysis , avilable online at:

https://onlinecourses.science.psu.edu/stat501/node

/165.

[20]. Nagappan, Nachiappan, and Thomas Ball. "Use of

relative code churn measures to predict system

defect density." Software Engineering, 2005.

ICSE 2005. Proceedings. 27th International

Conference on. IEEE, 2005.

